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Part One
INTRODUCTION

For twenty years, from 1946 to 1965, the Department of Mathematics at
Stanford University conducted a competitive examination for high school
seniors. The immediate and principal purpose of the examination was to
identify, among each year’s high school graduates, singularly capable
students and attract them to Stanford. The broader purpose was to stimulate
interest in mathematics among high school students and teachers generally,
as well as the public.

The examination was modeled on the Edtvos Competition [see 23],°
which was organized in Hungary in 1894 and which, in turn, appears to have
been suggested by similar competitions in England and France. Gabor
Szeg®, chairman of the Stanford Department of Mathematics in 1946 and
winner of the Eotvés Competition in 1912, initiated the Stanford examination.

The examination was established in the belief that an early manifestation
of mathematical ability is a definite indication of exceptional intelligence
and suitability for intellectual leadership in any field of endeavor. Further-
more, mathematical ability can be tested at a comparatively early age
because it is manifested “not so much by the amount of accumulated knowl-
edge as by the originality of mind displayed in the game of grappling with
difficult though elementary problems [2, p. 406].”

As Buck [1] noted some years ago in reviewing mathematical competi-
tions, an examination can be designed, broadly speaking, to test either
achievement or aptitude. The Stanford University Competitive Examination
in Mathematics was of the latter type. It emphasized

originality and insight rather than routine competence . . . . A typical
question might call for specific knowledge within the reach of those
being tested, but would call for the employment of this in unusual ways
requiring a high degree of ingenuity. The question may in fact introduce
certain concepts which are quite unfamiliar to the student. In short, the
winning student is asked to demonstrate research ability [1, pp. 204—
205].

° Numbered references are on pages 67-68.




The first Stanford examination, in 1946, was administered in 60 California
high schools to 322 participants. The winner was awarded a one-year
scholarship by Stanford University; honorable mention and a mathematics
book were given to three other participants. In 1953, the examination was
extended beyond California to include Arizona, Oregon, and Washington;
the number of scholarships was increased to two; and the number of
honorable mention awards and books was increased to ten or so. From
1958 to 1962, the examination was co-sponsored by Sylvania Electric
Products, Inc. The last examination, in 1965, was administered to about
1200 participants in 151 centers in California, Arizona, Idaho, Montana,
Nevada, Oregon, and Washington. Cash prizes of $500, $250, and $250 were
awarded to the three winners; honorable mention and a mathematics book
went to eighteen participants. The examination was discontinued after 1965
mainly because the Stanford Department of Mathematics turned its interest
to more graduate teaching.

Announcements of the examination were sent each year to all public
and private high schools in each state where the examination was to be
administered. Larger schools were designated as centers; students from
other schools were free to arrange to take the examination in a convenient
location.

The examination was administered by teachers and school personnel
on a Saturday afternoon in March or April. The participants were given
three hours to attempt three to five problems. The following instructions
were given:

No books or notebooks may be used. You may not be able to do all the
problems in three hours, but whatever you do should be carefully thought
out. Scratch paper may be used. Either pen or pencil may be used. No
questions concerning the test should be asked of the person in charge.
Good presentation counts!
It should be clear, concise, complete.

The papers were read in a two-stage process: First, they were read by
teams of graduate students in the Department of Mathematics, including,
as was sometimes possible, graduate students who were experienced high
school teachers. Each team of two students was assigned a problem to read
in as many papers as they could handle. Papers containing either a stated
minimum of good solutions (for example, one and a half or two out of four)
or some special feature were forwarded to the second stage. In the second
stage, each paper that survived the first screening was read by at least one
faculty member of the Department. The papers considered most likely
to be winners were read by all participating faculty members.

To make the selection of winners easier, the problems were devised
so that only a very few participants would be able to solve all of them.
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On the other hand, to avoid too much frustration, the first problem was
usually more accessible than the others, especially in the later years, so that
many participants were able to solve it.

Although the mathematical content of the problems did not go beyond
that of the high school curriculum, the problems were of types seldom
found in textbooks. The purpose of such problems was not only to test the
students’ originality, but also to enrich the high school mathematics program
by suggesting some new directions for students’ and teachers’ work. The
types of problems included: (1) “guess and prove,” in which one f’irst
guesses and then proves a mathematical fact; (2) “test consequences,” in
which one tests the consequences of a general statement; (3) “you may
guess wrong,” in which a highly plausible guess is incorrect; (4) “small s?ale
theory,” in which a sequence of subproblems illustrates theory construction;
and (5) “red herring,” in which an obvious relationship among the data
turns out to be irrelevant to the solution [see 9; 19, pp. 160-161, ex. 1; 21,
p- 139, ex. 14.23].

The problems were of the sort used as illustrations in How to Solve It
[17], in the two volumes of Mathematics and Plausible Reasoning [18, 19],
and in the two volumes of Mathematical Discovery [20, 21]. In fact, many
of the problems appear, usually with solutions, in one or another of those
books.

Most of the problems have also appeared in journals. The problems
and the list of winners for each examination from 1946 to 1953 (except
1952) were published in the American Mathematical Monthly [2, 3, 4, 5,
6, 7, 8]; and the complete set of problems, together with an Introduction,
somewhat adapted here, appears in the June-July 1973 issue of that monthly
[24]. Articles containing problems, solutions, comments, and lists of winners
for 1953 to 1961 (except 1959) were published in the California Mathe-
matics Council Bulletin [9, 10, 11, 12, 13, 14, 15, 16].

The complete set of problems has never before, however, been pub-
lished together with hints and solutions for all problems. Material copy-
righted previously is reprinted here by permission.

Part Two contains the complete set of problems from the Stanford
University Competitive Examination in Mathematics. They are numbered
sequentially, by year and problem number, as follows: 46.1 designates
problem 1 in the 1946 examination.

Part Three contains a hint for each problem; the hints are numbered
to correspond with the problems. The hints are similar to those in Part IV
of How to Solve It [17], and most of them use one or more of the heuristic
questions and suggestions treated in that book.

Part Four contains a solution for each problem (sometimes two solu-
tions); the numbering is as before. Solutions outline the procedures used,
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but some details are, of course, left to the reader. Some solutions end with
an indication of connections to other problems or generalizations.
References to articles and books in which problems have appeared Part Two
previously (with or without solutions) are given in brackets with the
corresponding solutions in Part Four.
Many of the hints and solutions have come from discussions in seminars PROBLEMS
on problem solving held at Stanford University and at Teachers College.
The problems have been used to illustrate problem-solving techniques with
freshmen, prospective teachers, and experienced teachers alike. Teachers,

and teachers of teachers, may find some useful suggestions on how to use
the problems in Mathematical Discovery [20, pp. 209-212].

PROBLEMS 46

46.1. In a tennis tournament there are 2n participants. In the first round
of the tournament each participant plays just once, so there are n
games, each occupying a pair of players. Show that the pairing
for the first round can be arranged in exactly

I1X3X5EXTX9...X(2n—-1)
different ways.

462. In a tetrahedron (which is not necessarily regular) two opposite
edges have the same length a and they are perpendicular to each
other. Moreover they are each perpendicular to a line of length b
which joins their midpoints. Express the volume of the tetrahedron
in terms of @ and b, and prove your answer,

46.3. Consider the following four propositions, which are not necessarily
true.
1. If a polygon inscribed in a circle is equilateral it is also
equiangular.
u. If a polygon inscribed in a circle is equiangular it is also
equilateral.
m. If a polygon circumscribed about a circle is equilateral
it is also equiangular.
. If a polygon circumscribed about a circle is equiangular
it is also equilateral.

(A) State which of the four propositions are true and which are
false, giving a proof of your statement in each case.

(B) If, instead of general polygons, we should consider only
quadrilaterals which of the four propositions are true and
which are false? And if we consider only pentagons?

In answering (B) you may state conjectures, but prove as
much as you can and separate clearly what is proved and
what is not.
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PROBLEMS 47 PROBLEMS 48
47.1. To number the pages of a bulky volume the printer used 1890 digits. 48.1 Consider the table:
How many pages has the volume? 1 o 1
24344 = 148
47.2. Among grandfather’s papers a bill was found: ' ) 546474849 — 8497 |
3 oty ST . 10+ 11412+ 13+ 14 + 15+ 16 = 27 + 64
The first and last digit of the number that obviously represented ' Guess the general law suggested by these examples, express it in

the total price of those fowls are replaced here by blanks, for they
have faded and are now illegible.
What are the two faded digits and what was the price of one

turkey?

suitable mathematical notation, and prove it.

48.2. Three numbers are in arithmetic progression, three other numbers
in geometric progression. Adding the corresponding terms of these
two progressions successively, we obtain

85, 76, and 84

respectively, and adding all three terms of the arithmetic pro-
gression, we obtain 126. Find the terms of both progressions.

47.3. Determine m so that the equation in x
xt— (8m 4 2)x2 +m* =20
has four real roots in arithmetic progression.

474. Let «, B, and 7y denote the angles of a triangle. Zhow that 48.3. From the peak of a mountain, you see two points, A and B, in the
% : . _ o 0 plain. The lines of vision, directed to these points, include the |
s <+ sin Y engi= o g v g ¥y angle y. The inclination of the first line of viin)on to a horizontal
plane is «, that of the second line B. It is known that the points
A and B are on the same level and that the distance between
them is c.
Express the elevation x of the peak above the common level of
A and B in terms of the angles e, B, y and the distance c.

sin 2« + sin 28 +- sin 2y = 4 sin a sin B siny
and
sin 4a 4 sin 48 + sin 4y = —4 sin 2« sin 2 sin 2y.

48.4. A first sphere has the radius r,. About this sphere circumscribe a
regular tetrahedron. About this tetrahedron circumscribe a second
sphere with radius r.. About this second sphere circumscribe a
cube. About this cube circumscribe a third sphere with radius 7.
Find the ratios r, : r, : ry (which should be, according to Kepler,
the ratios of the mean distances of the planets Mars, Jupiter, and
Saturn from the Sun, but which are, in fact, rather different from
the true ratios).
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PROBLEMS 49

49.1. Prove that no number in the sequence
10 0 1 1 O I O 5 8

is the square of an integer.

49.2. The three sides of a triangle are of lengths [, m, and n, respectively.
The numbers I, m, and n are positive integers,

l=m=n.

(A) Take n = 9 and find the number of different triangles of the
described kind.
(B) Take various values of n and find a general law.

49.3. (A) Prove the following theorem: A point lies inside an equilateral
triangle and has the distances x, y, and z from the three sides
respectively; h is the altitude of the triangle. Then

x+y+z=h

(B) State precisely and prove the analogous theorem in solid
geometry concerning the distances of an inner point from the
four faces of a regular tetrahedron.

(C) Generalize both theorems so that they should apply to any
point in the plane or space, respectively (and not only to points
inside the triangle or tetrahedron). Give precise statements
and, if you have time, also proofs.
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PROBLEMS 50

50.1. Observe that
1:=1
1—4=—(1+4+2)
1—44+9=14243
1—449—16=—(14+2+3+4)
Guess the general law suggested by these examples, express it in
suitable mathematical notation, and prove it.

50.2. Given a square. Find the locus of the points from which the square
is seen under an angle (A) of 90° (B) of 45°. (Let P be a point
outside the square, but in the same plane. The smallest angle with
vertex P containing the square is the “angle under which the square
is seen” from P.) Sketch clearly both loci, give a full description,
and a proof.

50.3. Call “axis” of a solid a straight line joining two points of the surface
of the solid and such that the solid, rotated about this line through
an angle which is greater than 0° and less than 360° coincides with
itself.

A cube has 13 different axes, which are of three different kinds.
Describe clearly the location of these axes, find the angle of rotation
associated with each. Assuming that the edge of the cube is of
unit length, compute the arithmetic mean of the lengths of the 13
axes. Do not use tables and compute to two decimals.




PROBLEMS 51

51.1. The length of the perimeter of a right triangle is 60 inches and the

length of the altitude perpendicular to the hypotenuse is 12 inches.
Find the sides of the triangle.

51.2. A quadrilateral is cut into four triangles by its two diagonals. We

call two of these triangles “opposite” if they have a common vertex

but no common side. Prove the following statements:

(A) The product of the areas of two opposite triangles is equal to
the product of the areas of the other two opposite triangles.

(B) The quadrilateral is a trapezoid if, and only if, there are two
opposite triangles equal in area.

(C) The quadrilateral is a parallelogram if, and only if, all four
triangles are equal in area.

51.3. We consider the frustum of a right circular cone. The plane that is

parallel to the lower and upper bases of the frustum and at equal
distance from both intersects the frustum in the “median circle.”
The frustum and a cylinder have the same altitude, and the median
circle of the frustum is the base of the cylinder.

Which one of these two solids has the greater volume, the frus-
tum or the cylinder? Prove your answer!

(A possible proof is by algebra: Express both volumes in terms
of suitable data and transform their difference so that its sign
becomes obvious.)
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PROBLEMS 52

52.1. Prove the proposition: If a side of a triangle is less than the average
(arithmetic mean) of the two other sides, the opposite angle is less
than the average of the two other angles.

52.2. 'Consider the frustum of a right pyramid with square base. Call
“midsection” the intersection of the frustum with a plane parallel
to the base and the top and at the same distance from both. Call
“intermediate rectangle” the rectangle of which one side is equal
to a side of the base and the other side is equal to a side of the
top.

Four different friends of yours agree that the volume of the
frustum equals the altitude multiplied by a certain area, but they
disagree and make four different proposals regarding this area:

1. the midsection
1. the average of the base and the top
m1. the average of the base, the top, and the midsection
v. the average of the base, the top, and the intermediate
rectangle.

Let h be the altitude of the frustum, a the side of its base, and b
the side of its top. Express each of the four proposed rules in
mathematical notation, decide whether it is right or wrong, and
prove your answer.

52.3. Prove that the only solution of the equation
2+ y* + 2 = 2xyz

in integers x, y, and zis x =y =z = 0.




12
PROBLEMS 53

53.1. Bob has 10 pockets and 44 silver dollars. He wants to put his dollars
into his pockets so distributed that each pocket contains a different
number of dollars.

(A) Can he do so?
(B) Generalize the problem, considering p pockets and n dollars.

The problem is the most interesting when

e 1)2(P =2}

Why?

53.2. Observe that the value of
1 2 3 n
atastat T EE

is 1/2, 5/6, 23/24 forn=1,2,3, respectively, guess the general
law (by observing more values if necessary) and prove your guess.

53.3. Find x, y, u, and v satisfying the system of four equations
x+Ty+3v+5u= 16
8x + 4y + 6v + 2u = —16
% + 6y + 40+ 8u= 16
5x + 3y + Tv + u= —16
('This may look long and boring: look for a shortcut. )

53.4. The four points G, H, V, and U are (in this order) the four corners
of a quadrilateral. A surveyor wants to find the length UV = x. He
knows the length GH = [ and measures the four angles

/GUH = «, LHUV = B, LUVG =1y, /GVH =a.

(A) Express x in terms of a, B,7, 8, and .
(B) Find some way to test the correctness of the result.
(C) If you had a clear plan to do (A) characterize it in one short

sentence.
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PROBLEMS 54
54.1. Consider the table
1 = 1
345 = 8
74+9+411 = 27
13415417419 = 64

21 + 23 + 25+ 27429 =125
Gt.xess the general law suggested by these examples, express it in
suitable mathematical notation, and prove it.

54.2. The side of a regular hexagon is of length n (n is an integer). By
equidistant parallels to its sides, the hexagon is divided into T
equilateral triangles each of which has sides of length 1. Let V
denote the number of vertices appearing in this division, and L
the number of boundary lines of length 1. (A boundary line belongs
to one or two triangles, a vertex to two or more triangles. )

When n = 1 (which is the simplest case), T =6,V =7, L = 12.
Consider the general case and express T, V, and L in terms of n.
(Guessing is good, proving is better.)

54.3. Show that it is impossible to find (real or complex) numbers a, b, c,
A, B, and C such that the equation

x% 4 y? 4 22 = (ax + by + cz) (Ax + By + Cz)
holds identically for independently variable z, y, and z.
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PROBLEMS 55

55.1. Bob wants a piece of land, exactly level, which has four boundary
lines. Two boundary lines run exactly north-south, the two others
exactly east-west, and each boundary line measures exactly 100
feet. Can Bob buy such a piece of land in the U.S.? State your
reasons!

552. (A) Find three numbers p, g, and r so that the equation
4t — 22— 1264 9= (px2 4+ qx +1)*
holds identically for variable x.
(B) This problem requires the “exact” extraction of a square root
of a given polynomial of degree 4, which may be possible in
the present case, yet usually it is not. Why not?

55.3. Bob, Peter, and Paul travel together. Peter and Paul are good hikers;
each walks p miles per hour. Bob has a bad foot and drives a small
car in which two people can ride, but not three; the car covers ¢
miles per hour. The three friends adopted the following scheme:
They start together, Paul rides in the car with Bob, Peter walks.
After a while, Bob drops Paul who walks on; Bob returns to pick up
Peter, and then Bob and Peter ride in the car till they overtake
Paul. At this point, they change: Paul rides and Peter walks just
as they started and the whole procedure is repeated as often as
necessary.

(A) How much progress (how many miles) does the company
make per hour?

(B) Through which fraction of the travel time does the car carry
just one man?

(C) Check the extreme cases p =0 andp =c.

55.4. The vertex of a pyramid opposite the base is called the apex.

(A) Let us call a pyramid “jsosceles” if its apex is at the same
distance from all vertices of the base. Adopting this definition,
prove that the base of an isosceles pyramid is inscribed in a
circle the center of which is the foot of the pyramid’s altitude.

(B) Now let us call a pyramid “jsosceles” if its apex is at the same
(perpendicular) distance from all sides of the base. Adopting
this definition (different from the foregoing) prove that the
base of an isosceles pyramid is circumscribed about a circle
the center of which is the foot of the pyramid’s altitude.

56.1.

56.2.

56.3.

56.4.
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PROBLEMS 56

Given a regular hexagon and a point in its plane. Draw a straight line
through the given point that divides the given hexagon into two
parts of equal area.

I say that you can pay 50 cents in exactly 50 different manners. (The
“manner” depends on how many coins of each kind—cents, nickels,
dimes, quarters, half dollars—you use.) In how many manners can
you pay 25 cents? Am I right about 50 cents? Justify your answer
as clearly as you can.

Construct a hexagon by adding to an arbitrarily given triangle A
three exterior isosceles triangles each of which has an angle of 120°
opposite to that side of /\ that forms its base. Show that those three
vertices of the hexagon that are not vertices of the given A are the
vertices of an equilateral triangle. (It is enough to express just one
side s of the allegedly equilateral triangle in terms of the sides
a, b, and ¢ of /\, provided that this expression for s is symmetric
ina, b, and ¢.)

Ten people are sitting around a round table. The sum of ten dollars
is to be distributed among them according to the rule that each
person receives one half of the sum that his two neighbors receive
jointly. Is there just one way to distribute the money? Prove your

answer.
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PROBLEMS 57

57.1. Bob’s stamp collection consists of three books. Two tenths of his
stamps are in the first book, several sevenths in the second book,
and there are 303 stamps in the third book. How many stamps has
Bob? (Is the condition sufficient to determine the unknown?)

We call a vertex of a tetrahedron trirectangular if the three edges
starting from it are perpendicular to each other. Given the areas
A, B, and C of the three faces adjacent to the trirectangular vertex
of a tetrahedron, find the area D of the fourth face, opposite to that
vertex. (Which problem of plane geometry would you regard as
analogous? )

Divide a given triangle by three straight cuts into seven pieces four
of which are triangles (and the remaining three pentagons). One
of the triangular pieces is included by the three cuts, each of the
three other triangular pieces is included by a certain side of the
given triangle and two cuts.

(A) Choose the three cuts so that the four triangular pieces turn
out to be congruent. Describe your choice precisely and draw
a clear figure.

(B) Which fraction of the area of the given triangle is the area
of a triangular piece in the dissection that you chose?
(It may be advantageous to examine first a particular shape of
the given triangle for which the solution is particularly easy.)
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PROBLEMS 58

How old is the captain, how many children has he, and how long is
his boat? Given the product 32118 of the three desired numbers
(integers ). The length of the boat is given in feet (is several feet),
the captain has both sons and daughters, he has more years than
children, but he is not yet one hundred years old. (Give reasons
for your answer.)

Find x, y, u, and v satisfying the system of four equations:
x+y4+u= 4
y+u+v=-—5
ut+v4+x= 0
v+x+y=—8

(This may look long and boring: look for a shortcut. )

“In any triangle the sum of the three . . . is greater than the semi-
perimeter.”
Replace the dots . . . successively by
1. altitudes
1. medians
1. bisectors (of the angles).
You obtain so three different assertions. Examine each assertion:
is it true or false? Prove your answer!

Observe that the value of
1M +224+3834+ ... +nln

is 1, 5, 23, 119 for n = 1, 2, 3, 4, respectively. Guess the general law
(by observing more values if necessary) and prove your guess.
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PROBLEMS 59 ' PROBLEMS 60

59.1. Al and Bill live at opposite ends of the same street. Al had to deliver 1. A certain make of ball point pen was priced 50 cents in the store
a parcel at Bill's home, Bill one at Al's home. They started at the opposite the high school but found few buyers. When, however, the
same moment, each walked at constant speed and returned home store had reduced the price, the whole remaining stock was sold
immediately after leaving the parcel at its destination. They met for $31.93. What was the reduced price? (Is the condition sufficient
the first time at the distance of a yards from Al's home and the to determine the unknown?)
second time at the distance of b yards from Bill's home.
(A) How long is the street?

(B) If a = 300 and b — 400, who walks faster? The point P is so located in the interior of a rectangle that the dis-

tance of P from a corner of the rectangle is 5 yards. from the
: opposite corner 14 yards, and from a third corner 10 yards. What is
59.2. Pennies (equal circles) are arranged in a regular pattern all over a the. distanioa of P Eeoti the fourth cormer?
very-very large table (the infinite plane). We examine two pat-
terns. . .
In the first pattern, each penny touches four other pennies and 3. Prove the identity
« «

the straight lines joining the centers of the pennies in contact cos - cos

cos & = sin «
g=

dissect the plane into equal squares. Bl £
In the second pattern, each penny touches six other pennies and
the straight lines joining the centers ot the pennies in contact and generalize.
dissect the plane into equal equilateral triangles.
Compute the percentage of the plane covered by pennies 4. Of twelve congruent equilateral triangles eight are the faces of a
(circles) for each pattern. regular octahedron and four the faces of a regular tetrahedron.

8

Find the ratio of the volume of the octahedron to the volume of the

59.3. Prove: If n is an integer greater than 1, n"~' — 1 is divisible by tetrahedron.
(n—1)2

59.4. Erect an (exterior) square on each side of an (arbitrarily given)
triangle. Those 6 vertices of these 3 squares that do not coincide
with a vertex of the triangle form a hexagon. Three sides of this
hexagon are, of course, equal to the corresponding sides of the
triangle. Show that each one of the remaining three sides equals
the double of a median of the triangle.
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PROBLEMS 61

61.1.

Solve the following system of three equations for the unknowns x,
y and z:

5732x + 2134y + 2134z — 7866,
2134x + 5732y + 2134z = 670,
2134x + 2134y + 5732z = 11464,

61.2. It was a very hot day and the 4 couples drank together 44 bottles of

coca-cola. Ann had 2, Betty 3, Carol 4 and Dorothy 5 bottles. Mr.
Brown drank just as many bottles as his wife, but each of the other
men drank more than his wife: Mr. Green twice, Mr. White three
times and Mr. Smith four times as many bottles. Tell the last names
of the four ladies. (Prove your answer.)

61.3. Solve the following system of three equations for the unknowns

x, y,and z (@, b, and ¢ are given ):
2?y? + x%2° = axyz,
y*z® + y*x* = bayz,
%% + z2%y% = cxyz.

61.4. A pyramid is called “regular” if its base is a regular polygon and the

foot of its altitude is the center of its base. A regular pyramid has
a hexagonal base the area of which is one quarter of the total
surface-area S of the pyramid. The altitude of the pyramid is h.
Express S in terms of h.

62.1.

62.2.

62.3.

62.4.
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PROBLEMS 62

Solve the system
2x% — 4xy + 3y* = 36
3x? — 4xy + 2y* = 36

(One solution is easy to guess, but you are required to find all
solutions. Knowledge of analytic geometry is not needed to solve
this problem, but may help to understand the result—how?)

Each of the four numbers a, b, ¢, and d is positive and less than one.
Show that not all four products

4a(1 —Db),4b(1 —c),4c(1 —d),4d(1 — a)
are greater than one.

On each side of a right triangle, erect an exterior square (as it is
usually done to illustrate Pythagoras’ theorem). Join the vertex
of the triangle’s right angle to the center of the square on the
hypotenuse, and join the centers of the squares on the other two
sides. Show that the two line segments so obtained are
(A) perpendicular to each other and
(B) of equal length.

Five edges of a tetrahedron are of the same length a, and the sixth
edge is of the length b.
(A) Express the radius of the sphere circumscribed about the
tetrahedron in terms of a and b.
(B) How would you use the result (A) to determine practically
the radius of a spherical surface (of a lens)?
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PROBLEMS 63

63.1. In a right triangle, ¢ is the length of the hypotenuse, a and b are
the lengths of the two other sides, and d is the length of the
diameter of the inscribed circle. Prove that

at+b=c-+d

63.2. Show that the expression
n?(n? —1) (n*> —4)
is divisible by 360 forn =1, 2,3, . . . .

63.3. Solve the system of three equations for the unknowns x, y, and z,
giving all solutions:
x2 + 5y 4 622 4 8(yz + zx + xy) = 36
6x* + y2+ 524 8(yz +zx +xy) =36
5x¢2 + 6y* + 2* 4 8(yz + zx + xy) = 36
(One solution is easy to find. )

63.4. The base of a right prism is a regular hexagon, and the height of the
prism is equal to the diameter of the circle inscribed in the base.

The volume of the prism is equal to the volume of a regular
octahedron.

Find the ratio of the surface-areas of these two solids.

Observe that the two solids have the same number of faces, and
one of them is a regular solid, but the other is not. Any remark?
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PROBLEMS 64

A cake has the shape of a right prism with a square base; it has
icing on the top as well as on the sides (that is, on the four lateral
faces ). The altitude of the prism is 5/16 of the side of its base. Cut
the cake into 9 pieces so that each piece has the same amount
of cake and the same amount of icing. One of the 9 pieces should
be a right prism with a square base with icing only on the top:
Compute the ratio of its altitude to a side of its base and give a
clear description, with an acceptable sketch, of all 9 pieces.

Show that each number of the sequence
49, 4489, 444889, 44448889, . . .
is a perfect square.

If the area of a triangle is rational (that is, measured by a rational
number) there are four thinkable cases: The triangle may have
three or two rational sides, or just one or no rational side. Show by
(preferably simple) examples that all four cases are actually
possible.

An examination in three subjects, Algebra, Biology, and Chemistry
was taken by 41 students. The following table shows how many
students failed in each single subject and in their various combina-
tions:

in A B C AB AC BC ABC
failed 12 5 8 2 6 3 1

(For instance, 5 students failed in Biology, among whom there
were 3 failing both in Biology and in Chemistry, and just one of
these 3 failed in all three subjects.)

How many students passed in all three subjects?

(Can you think of a suitable diagram that would clarify the
underlying idea?)

Let a, b, and ¢ denote the lengths of the sides of a triangle, and d
the length of the bisector of the angle opposite to the side of
length ¢, terminated on the side.

(A) Express d in terms of a, b, and c.
(B) Check the expression obtained in as many ways as you can
(by particular cases, limiting cases, and so on).
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PROBLEMS 65

65.1. “How many children have you, and how old are they?” asked the

guest, a mathematics teacher.

“I have three boys,” said Mr. Smith. “The product of their ages
is 72 and the sum of their ages is the street number.”

The guest went to look at the entrance, came back and said:
“The problem is indeterminate.”

“Yes, that is so,” said Mr. Smith, “but I still hope that the oldest
boy will some day win the Stanford competition.”

Tell the ages of the boys, stating your reasons.

652. Of a right triangle, given the length of the hypotenuse ¢ and the
area A. On each side of the triangle, describe a square exterior to
the triangle and consider the least convex figure containing the
three squares (formed by a tight rubber band around them): it is a

l?: hexagon (which is irregular, has one side in common with each
square, and one of its remaining three sides is obviously of
length ¢).
Find the area of the hexagon.

i

1
i
65.3. Let the numbers, x, y, and 1 measure the lengths of the three sides

of some triangle and suppose that

psysSl
Let the point (x, y), with rectangular coordinates x and y, represent
the triangle on a plane. Describe precisely and sketch clearly the
set of those points of the plane that, in the manner explained,

represent
(A) triangles,
(B) isosceles triangles,
(C) right triangles,
(D) acute triangles,
(E) obtuse triangles.
Locate the representative points of still other noteworthy tri-
angular shapes.

65.4. Find the remainder of the division of the polynomial
%+ 2 + 2% 4 20 4 2
by the polynomial x* — x.

Part Three
HINTS

HINTS 46

46.1. Could you restate the problem? Imagine that you are one of the
participants. In how many ways can you be paired with someone
else? Do you see how the problem can be divided into two parts:
(A) choosing your antagonist, and (B) pairing the remaining
players?

46.2. Look at the unknown. The unknown is the volume of a tetrahedron,
which can be computed when the base and the height are given.
But neither the base nor the height is given in this problem. Could
you imagine a more accessible related problem? (Do you see a
mor:) accessible tetrahedron that is an aliquot part of the original
one!

" 46.3. Proving any one of the propositions reduces to proving either line
segments or angles equal. Do you know a theorem or theorems
useful in proving such things equal? Draw a figure. Could you
introduce some auxiliary elements to make possible the use of the
theorems you have recalled?

HINTS 47

47.1. Here is a problem related to yours: If the book has exactly 9 numbered
pages, how many digits does the printer use? (Answer: 9.) Here
is another problem related to yours: If the book has exactly 99
numbered pages, how many digits does the printer use?

47.2. Could you restate the problem? What can the two faded digits be if
the total price, expressed in cents, is divisible by 72?

47.3. What is the condition? The four roots must form an arithmetic pro-
gression. Yet the equation has a particular feature: it contains only
even powers of the unknown x. Therefore, if a is a root, —a is also
a root.
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47.4. Do you know a related theorem? Notice the similarity between the
three identities, especially in their left-hand sides. If you had
established one identity, how could you derive the other two?

HINTS 48

48.1. Discovery by induction needs observation, Observe the terms on the
right-hand sides, the initial terms of the left-hand sides, and the
final terms, What is the general law?

48.2. Separate the various parts of the condition. Can you write them
down? Let

a —d, a, a-+d
be the terms of the arithmetic progression, and
bg—1, b, bg
be the terms of the geometric progression.

48.3. Separate the various parts of the condition. Can you write them
down? Let a and b stand for the lengths of the (unknown) lines
of vision, @ and B for their inclinations to the horizontal plane,
respectively. We may distinguish three parts in the condition,
concerning

(1) the inclination of a
(2) the inclination of b
(3) the triangle with sides a, b, and c.

48.4. Look at the unknown. There are two unknowns: the ratio r, : 72 and

the ratio 75 : 73.

HINTS 49

49.1. Could you restate the problem? As a “problem to find,” it becomes:
“Find a perfect square s of the form 1 + 10 4 10> 4 . . . + 107,
where k is a positive integer.” Separate the various parts of the
condition. Can you write them down? We may distinguish two
parts in the condition:

(1) s must be a square
(2) s must have the desired form.
Discovery by induction needs observation. Can you find a systematic
way of counting the triangles for a given value of n?

Do you know a related theorem? The altitude is h. Do you know a
simpler theorem concerning the altitude of a triangle?
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HINTS 50

Discovery by induction needs observation. Examine the transition
from one case to the next.

Do you know a related problem? The locus of the points from which
a given segment of a straight line is seen under a given angle
consists of two circular arcs, ending in the extreme points of the
segment, and symmetric to each other with respect to the segment.

Certain axes are easily found just by inspection—but are they all
the axes? Can you prove that your list of axes is exhaustive? Has
your list a clear principle of classification?

HINTS 51

Separate the various parts of the condition. Can you write them
down? We may distinguish three parts in the condition, concerning
(1) perimeter
(2) right triangle
(3) height to hypotenuse.

Draw a figure. Introduce suitable notation. How can you show that
areas (or products of areas) are equal?

Draw a figure. Introduce suitable notation.

HINTS 52

What is the hypothesis? What is the conclusion? Let a, b, and ¢
denote the sides, and A, B, and C the opposite angles, respectively.
Then the hypothesis is that

b+c
<73

a

and the conclusion is that

B

Look at the conclusion. Could you restate it?

52.2. Do you know a related problem? A more special problem? What
happens when you vary the data of the problem?
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52.3. What is the condition? The sum of the squares of three integers must
be twice their product. The sum must be an even number.

HINTS 53

53.1. If Bob had very many dollars, he would have obviously no difficulty
in filling each of his pockets differently. Could you restate the
problem? What is the minimum number of dollars that can be
put in 10 pockets so that no two different pockets contain the same
amount?

53.2. Do you recognize the denominators 2, 6, 247 Do you know a related
problem? An analogous problem?

53.3. To solve such a system we have to combine the equations in some
way—look out for relations between the equations which could
indicate a particularly advantageous combination.

53.4. Newton once observed that in certain geometric problems one obtains
the same system of equations regardless of which quantities are
considered as the data and which are considered as the unknowns.
Consequently, one should choose the data and unknowns so that it
is easy to set up the equations.

HINTS 54

54.1. Discovery by induction needs observation. Observe the right-hand
sides, the initial terms of the left-hand sides, and the final terms.
What is the general law?

54.2. Draw a figure. It may help you discover the law inductively, or it may
lead you to relations between T, V, L, and n.

54.3. Is it possible to satisfy the condition? Is the condition sufficient to
determine the unknown? How could you split the condition into
appropriate parts?

HINTS 55
55.1. What is the question? What does it mean? It is, in fact, a question

of interpretation: You are supposed to interpret “level,” “east,”
“west,” “north,” and “south” on an idealized, exactly spherical globe.
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55.2. Is it possible to satisfy the condition? Is the condition sufficient to
determine the unknown? How could you split the condition into
appropriate parts?

55.3. Separate the various parts of the condition. Can you write them
down? Between the start and the point where the three friends
meet again there are three different phases:

(1) Bob rides with Paul

(2) Bob rides alone

(3) Bob rides with Peter.
Call t,, t;, and t; the duration of these phases, respectively. How
could you split the condition into appropriate parts?

55.4. Do you know a related theorem? The foot of the altitude is the mid-
point of the base in an isosceles triangle. This is a theorem related
to yours and proved before. Could you use its method? The theorem
on the isosceles triangle is proved from congruent right triangles
of which the altitude is a common side.

HINTS 56

56.1. Could you imagine a more accessible related problem? A more gen-
eral problem?

56.2. Could you imagine a more accessible related problem? A more
general problem? An analogous problem? Here is a very simple
analogous problem: In how many ways can you pay one cent?
Here is a more general problem: In how many ways can you pay
an amount of n cents using cents, nickels, dimes, quarters, and half-
dollars? This problem can be solved by inspection for simple
particular cases, as shown in the short table below (where E,
denotes the number of different ways of paying an amount of
n cents using the five kinds of coins).

n 4 5 9 10 14 15 19 20 24

Ey, 1 2 2 4 4 6 6 9 9
We are especially concerned with Es; and E;o, but our question is
general (to compute E, for general n)—yet it is still “isolated.”
Here is a very simple analogous problem: Find A,, the number of
ways to pay an amount of n cents using only cents. (A, = 1.)

56.3. Draw a figure. Introduce suitable notation. How can you obtain an
expression for s? By Euclideau methods? By analytic geometry? By
trigonometry? Which appears most promising?
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56.4. Introduce suitable notation. What is the condition? How is each

person’s share related to that of his neighbors? To that of his left-
hand neighbor? Who gets the maximum amount of money?

HINTS 57

57.1.

What is the unknown? What are the data? What is the condition?

57.2. What is the unknown? The area, D, of a triangle. How can you get

this kind of thing? The area of a triangle can be computed by

Heron’s formula if the three sides are known. Let a, b, and ¢ denote

the lengths of the sides, and let s = (a + b + ¢) /2; then
D:=s(s—a)(s—Db)(s—c).

The sides a, b, and ¢ are in the right triangles whose areas are

A, B, and C, respectively. Let the legs of these triangles have

lengths p, g, and r, so that

@?=q*+r, b=r+p, E=p’+4q
But the areas A, B, and C are given by
1 1 e

We have seven unknowns—D, a, b, ¢, p, q, —and a system of seven
equations to determine them. Yet there is a snag: Solving the system
appears to be a lot of trouble, and Heron’s formula may not look too
inviting. Let’s try a new start.

What is the unknown? The area, D, of a triangle. How can you
get this kind of thing? The most familiar way to compute the area
of a triangle is

_a

=5
where a is the base, and h the altitude, of the triangle with area D.
Let a have the same meaning as above and let us introduce h into
the figure.

57.3. Could you imagine a more accessible related problem? A more special

problem?

HINTS 58

58.1. What is the unknown? Let x, y, and z represent the number of chil-
dren, the captain’s age, and the length of the boat, respectively.

58.2.

58.3.

58.4.

59.1.

59.2.

59.3.

59.4.

31

We may conceive the problem thus: the unknown is a triplet
(x, y, z) of numbers.
Separate the various parts of the condition. Can you write them
down?
(A) x,y, and z are positive integers different from 1 and such
that xyz = 32118.
(B) 4=x <y < 100.
Which clause, (A) or (B), is more manageable?

To solve such a system we have to combine the equations in some
way. Observe that any permutation of x, y, u, and v leaves the
system of the left-hand sides unchanged. This symmetry suggests
that we should treat all four equations symmetrically.

Could you imagine a more accessible related problem? A more
general problem? What is common to all three assertions? Could
you make a generalization?

Each assertion refers to an inequality. Do you know a theorem
that could be useful?

Discovery by induction needs observation, Can you see a pattern in
the cases observed?

HINTS 59

What is the unknown? What are the data® What is the condition?
Can you write an equation that expresses a part of the condition?
Recall that an equation expresses the same quantity in two dif-
ferent ways.

Draw a figure. What is the relationship between the percentage of
the plane covered by pennies and the percentage of each equal
square or equal equilateral triangle covered by pennies?

What is the hypothesis? What is the conclusion? The hypothesis is that
n is an integer greater than 1. The conclusion is that n"=! — 1 =
(n—1)2P(n), where P(n) denotes an integer depending on n.

Draw a figure. Introduce suitable notation. How can you show that
line segments are in the ratio1 : 2 ?

HINTS 60

What is the unknown? What are the data? What is the condition?
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60.2. Could you imagine a more accessible related problem? A more
general problem? Here is a more general problem: The point P lies
in the interior of a rectangle, its distances from the four corners
are a, b, ¢, and d, in cyclical order (as they are met by the hands
of a watch). Find d in terms of a, b, and c.

Do you know a related theorem? Try to think of a simpler analogous
identity.

What is the unknown? The unknown is the ratio of the volume of a
regular octahedron to the volume of a regular tetrahedron. What
do the octahedron and the tetrahedron have in common? Their faces
are congruent equilateral triangles; their edges are equal. Could
you restate the problem? Compute the volume of a regular octa-
hedron and the volume of a regular tetrahedron given the length

of an edge.
Draw a figure. Introduce suitable notation. The solution to a

problem in solid geometry often depends on a “key plane figure”
that opens the door to essential relations.

HINTS 61

61.1. To solve such a system we have to combine the equations in some
way. The system of the three left-hand sides is symmetric with
respect to x, y, and z; that is, it remains unchanged under any per-
mutation of x, y, and z. This suggests that we should treat all three
equations symmetrically.

Obviously, the number of possibilities is restricted from the start
(4! = 24). Yet, if you are smart, you need not examine all these
cases. Separate the various parts of the condition. Can you write
them down? Let b, g, w, and s stand for the number of bottles
consumed by the wife of Brown, Green, White, and Smith, re-
spectively.

To solve such a system we have to combine the equations in some
way. The symmetry of the system of the three left-hand sides
suggests that we treat all three equations symmetrically. A natural
first step is to eliminate the product xyz on the right-hand sides by
dividing, but this forces the examination of those cases in which
xyz vanishes.

Draw a figure. Introduce suitable notation. The solution to a problem
in solid geometry often depends on a “key plane figure.”
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HINTS 62

Observe that the system is symmetric with respect to the two
unknowns x and y. This symmetry should somehow be mirrored
in the solution.

Observe that the set of four products is symmetric with respect to
a, b, ¢, and d. This symmetry should somehow be mirrored in the
solution.

Draw a figure. Introduce suitable notation. Denote the vertices of the
triangle by A, B, and C, where C is the vertex of the right angle.
Let A’, B, and C’ be the centers of the squares described on sides
BC, CA, and AB, respectively. In the figure, C appears to lie on
A’B’. Do you see any advantage in attempting to prove this
conjecture?

Draw a figure. Introduce suitable notation. The solution to a problem
in solid geometry often depends on a “key plane figure.”

HINTS 63

Go back to definitions. What is the inscribed circle of a triangle?
Do you know a theorem that could be useful?

What is the conclusion? The expression must be divisible by 360. Yet
the expression has an unusual feature: its three factors can them-
selves be factored, to yield a product of six factors.

Observe that the system is symmetric with respect to the three
unknowns %, y, and z. This symmetry should somehow be mirrored
in the solution.

Since the two solids have the same number of faces and the same
volume, try to guess which one has the smaller surface area. The
correctness of your guess is less important than how you test it.

HINTS 64

Wh'at is the unknown? The ratio of the altitude of a right prism to a
side of its square base. How can you get this kind of thing? If you
calculate expressions for the two quantities, you can take their

:ﬁtio. What are these quantities? How can you get expressions for
em?




64.2. Consider the general case: what is the nth term of the sequence?
Can you guess what its positive square root might be? How could

you test this guess?

64.3. As long as you are free to choose your own example in each case,
you might as well select a triangle whose area is easy to calculate.

64.4. What are the various possibilities for passing or failing the three
subjects? Can you think of some systematic way of counting how
many students fell into each category?

64.5. Draw a figure. Introduce suitable notation. The bisector d divides the
side ¢ into two segments whose lengths we shall denote by p and g,
respectively; the first has a common endpoint with a, the second
with b. Now we have

three data: a, b, and ¢
three unknowns: p, ¢, and d
three triangles: the original one and the two smaller ones

into which it is divided by d.

HINTS 65

65.1. Separate the various parts of the condition. Can you write them down?
We may distinguish four parts in the condition, concerning
(1) the product of the boys™ ages
(2) the sum of their ages
(3) the indeterminacy of the problem
(4) the fact (whose revelance may pass unnoticed)
that one of the boys is the oldest.

65.2. What is the unknown? The area of the hexagon. How do you get this
kind of thing? Is the condition sufficient to determine the unknown?

65.3. What is the unknown? There are five unknowns: A set of points (A)
and four subsets of it. How can you characterize such a set? By
specifying the coordinates x,y of the points belonging to it—by
relations between these coordinates!

65.4. What is the unknown? The remainder after division of one polynomial
by another. Could you restate the problem? Denote the quotient by
g(x) and the remainder by r(x). We are to find a polynomial r(x)
of degree not higher than 2 such that

x -+ a® 4 22 4 x4 4 28 = q(x) (2® — x) 4 7(x).

Part Four

SOLUTIONS

Note: References in brackets at the beginning of a solution are to books and
articles in which the corresponding problem has appeared previously (in
many cases with the solution given here or one very similar). The American
Mathematical Monthly article containing the complete set of problems [24]
is not included in these references. Page numbers refer to the statement of
the problem itself in a given reference. “Cf.” refers to different but related
Problems, or to cases in which a problem or solution varies somewhat
in wording or content from the one given in this book. The interested reader
will find it helpful to recall that only references [9-21] contain solutions
hints, or comments. All references are identified on pages 67-68. ’

SOLUTIONS 46

46.1. [2; 18, p. 118] Call the required number of pairings of 2n players
P,. If you are a participant, you can be matched with any one of
the qther 2n — 1 players. Once your antagonist is chosen, there
remain

2n —2=2(n—1)
players, who can be paired in P, _, ways. Hence
P,=(2n—1)P,_;.

46.2. [2; 17, p. 235; Cf. 20, pp. 109-110, ex. 4.17] The plane through one
edge of length @ and the perpendicular of length b divides the
tetrahedron into two more accessible congruent tetrahedra, each
with base ab/2 and height a/2. Hence the required volume

1 ab a a2b




]
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46.3. [2; Cf. 19, pp. 161-162, ex. 4]

(A) Propositions 1 and 1v are generally true, but Propositions 11
and 11 are false.

(B) Propositions 11 and m are false: the rectangle and the rhom-
bus are counterexamples, respectively. Propositions 11 and m
are true for pentagons, and follow from Propositions 1’ and
m’ respectively:

1. If a polygon inscribed in a circle is equiangular, any two
sides separated by just one intervening side are equal.
ur’. If a polygon circumscribed about a circle is equilateral,
any two angles separated by just one intervening angle
are equal.
To prove Propositions 1, 1/, ur’, and 1v, join the center of the
circle to the vertices of the polygon, draw perpendiculars from
the center to the sides, and pick out congruent triangles.

SOLUTIONS 47

47.1. [3; Cf. 17, p. 234, prob. 4] A volume of 999 pages needs
9 4+ 23X 90 4 3 X900 = 2889
digits. If the bulky volume in question has x pages,

189 4 3(x — 99) = 1890
x — 666.

472 [3; 17, p. 234] If —679— is divisible by 72, it is divisible both by
8 and by 9. If it is divisible by 8, the number 79— must be divisible
by 8 (since 1000 is divisible by 8) and so 79— must be 792: the
last faded digit is 2. If —6792 is divisible by 9, the sum of its digits
must be divisible by 9 (the rule about “casting out nines”) and so
the first faded digit must be 3. The price of one turkey was (in
grandfather’s time) $367.92 <+ 72 = $5.11.

473. [3;17, p. 236] If a and —a are the roots with least absolute value,

the progression will be of the form

—3a, —a, a, 3a.
Hence

(x2 — @) (a2 — 9a%) = x* — (3m + 2)x* 4+ m2

Comparing coefficients of like powers, we obtain the system

10a*> = 3m + 2

9a* = m?2.
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Elimination of a yields
19m?* — 108m — 36 = 0
Hence m = 6 or —6/19.

474. [3; 19, p. 162] Call the three identities (a), (b), and (c), respec-
tively. If
a+B+y=m,
then
(r—2a) + (7 —28) + (7 —2y) =
We can pass from (a) to (b), and also from (b) to (c), by
s'ubstltuting m — 2, m — 23, and m — 2y for a, B, and 7, respec-
tively. It remains to verify (a), which can be done in many ways.

For instance, substitute 2u, 2v, and # — 2u — 2v for «, B, and ¥,
respectively. Then (a) becomes

sin % cos # + sin v cos v
= [2 cos u cos v — cos (u 4 v)] sin (u + v).
Use the addition theorems of cosine and sine.

SOLUTIONS 48

48.1. [4;18,p.8] The general law is:
(P4+1)+(nP+2)+ ... +(n+1)2=n*+ (n+1)3

The terms on the left-hand side are in arithmetic progression.

48.2. [4;17, p. 236] The condition is easily split into four parts expressed
by the four equations

a—d-+bgt= 85

a+b = 76
a+d-+bg = 84
3a =126

The last equation yields @ = 42, then the second b = 34. Adding
the remaining two equations, we obtain

2a 4+ b(g—' + g) = 169.
Since a and b are already known, we have here a quadratic equa-
tion for g. It yields

g=24d= —28 or g:%,d:?b’.




The progressions are

68, 42, 16 17, 42, 67
or
17, 34, 68 68, 34, 17

48.3. [4; 17, p. 237] The three parts of the condition are expressed by

The elimination of @ and b yields
¢ sin® a sin® B

jt?2=sinzoz—f-sin2[3—2sinozsinBcosy'

48.4. [4; Cf. 18, p. 203, ex. 17] In the tetrahedron, an altitude is one leg
of a right triangle whose hypotenuse is an edge. If the edge has
length a, the other leg of the triangle has length a/7/3 (it is two-
thirds of the altitude of a face). Since the length of the altitude is

71 -+ 7», we obtain

51 + o = g%g
The center of the tetrahedron lies on the altitude, and the line
segment of length 7. joining the center to the opposite vertex of
the right triangle is the hypotenuse of a second right triangle
whose legs are of lengths r, and a/\/3. Thus

2

7'22 T 7'12 = _03_
Dividing by the previous equation, we obtain the system
a/6

6

Toi—:11 —

whose solution is 1, = a\/6/12 and r, = a\/6/4. Hence r, : 72
=148

In the cube, if b is the length of an edge, then r» = b/2 and
r3=>0\/3/2. Hencery: rs=1:\/Bandr : o :r;=1:3:3/3.
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SOLUTIONS 49

49.1. [5; 21, p. 192] If s is a number in the sequence, s must have the
form

11 + 100m = 4(25m + 2) -+ 3,
where m is a non-negative integer, and therefore s leaves a re-

mainder of 3 when divided by 4. But squares are of the form 4n? or

4n® + 4n + 1 and hence leave remainders of either 0 or 1 when
divided by 4.

49.2. [5; Cf. 18, p. 9, ex. 5]
(A) The values of I from 1 to 9 inclusive correspond to 1, 2, 3, 4, 5,
4, 3, 2, 1 triangles, respectively, or 52 = 25 in all.
(B) A general law would be
n+ 1\2 n41\2 1
( 2 ) o ( 2 ) T
according as n is odd or even. A uniform law for both cases:
the integer nearest to (n + 1)2/4.

49.3. [5;19, p. 161]

(A) Let a be a side of the equilateral triangle. Joining the point
inside the triangle to its three vertices, you divide it into
three triangles with areas that added together give the whole
area: ax/2 + ay/2 + az/2 = ah/2. Divide by a/2.

(B) A point inside a regular tetrahedron with altitude h has the
distances x, y, z, and w from the four faces, respectively. Then
x + Yy + z 4 w = h. The proof is analogous: divide the regular
tetrahedron into four tetrahedra.

(C) The relation remains valid in both cases (A) and (B) for
outside points, provided that the distances x, y, z (and w) are
taken with the proper sign: plus (4 ) when a spectator placed
in the point sees the side (face) from inside, minus (—) when
he sees it from outside. The proof is essentially the same.

SOLUTIONS 50
50.1.  [6;18,p.116] The general law is:
1—4+9—46+...+(_uwnﬁ=(_um4ﬂ%;ll

The step from n to n -+ 1 requires us to verify that

(=1)" (n 4 1)z = (—1)» (BE 1)2(n+ 2) (_1)"_1n(n;-12.
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50.2. [6; Cf. 17, pp. 234-235, prob. 7] In any position the two sides of
the angle must pass through two vertices of the square. As long as
they pass through the same pair of vertices, the angle’s vertex moves
along the same circular arc (by the theorem underlying the hint).
Hence each of the two loci required consists of several circular
arcs: of 4 semicircles in the case (A) and of 8 quarter-circles in the
case (B). (See [17, p. 244] for the figure.)

50.3. [6; Cf. 17, p. 235, prob. 8] The 13 axes may be classified as follows:
(1) 4 axes, each through two opposite vertices; angles 120°,
240°
(2) 6 axes, each through the midpoints of two opposite edges;
angle 180°
(3) 3 axes, each through the center of two opposite faces;
angles 90°, 180°, 270°.
The lengths are \/3, \/2, and 1, respectively, and the average is

#3463 +3_ 4
13 T

SOLUTIONS 51

5L.1. [7; 17, p. 237] Let a, b, and ¢ denote the sides, the last being the
hypotenuse. The three parts of the condition are expressed by

a+4+b-+4c=60
a2 + b2 =c?
ab = 12¢.

Observing that
(a + b)2=a®+ b*+ 2ab
we obtain
(60 — c)? = ¢ + 24c.
Hence ¢ = 25 and eithera = 15, b = 20 or a = 20, b = 15 (no
difference for the triangle).

51.2. [7; 19, p. 161] The quadrilateral has to be convex. Let us call 1, 11,
o, 1v the triangles into which it is divided by its diagonals; (1),
(m), (m), (v) the areas of the four triangles, respectively; and
p, q, 1, s the lengths of the four line segments from the vertices to
the intersection of the diagonals. Name and number in “cyclic
order” so that the side of length p is common to v and 1, g to 1 and
o, 7 to w and 11, s to 1x and 1v; 1 is opposite to mi, 1 to 1v; p -+ 7 is the
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length of one diagonal, g + s that of the other. Let p and g include

the angle . Then
2(1) = pq sin « 2(u) = grsin «

2(m) = rs sin 2(1v) = sp sin c..

Hence

(A) (1)(m) = (m) ().

(B) The base of 1is parallel to that of 1 if, and only if,

pla=t/s or  (u)= ().
(C) The quadrilateral is a parallelogram if, and only if,

p=rg=s or (1)=(u)=(m)= ()

51.3. [7; Cf. 20, p. 51, ex. 254] Let h be the common altitude and a and b
be the radii of the lower and upper base of the frustum, respec-
tively. Then the radius of the cylinder is (a 4 b) /2. The difference
of the volumes, frustum minus cylinder,

. [a2 + ab + b2 B (a + b)z:’ __ 7wh(a—Db)?
3 2 = 12

is positive unless ¢ = b and the solids coincide.

SOLUTIONS 52

52.1. Since A 4 B + C = 180°, proving that A < (B + C)/2 amounts to
proving that A < (180° — A)/2 or A < 60°. But A < 60° is
equivalent to cos A > 1/2, which suggests the use of the law of
cosines.

By hypothesis, b 4+ ¢ > 2a. Squaring both sides and applying
the law of cosines, we obtain

b? 4 2bc + ¢* > 4(b* + ¢ — 2bc cos A)
or
8bc cos A > 3b? + 3¢ — 2bc.
Subtracting 4bc from both sides, we obtain
4bc(2cos A—1) > 3(b—c)2=0.
Theretore cos A > 1/2.

52.2. [19, p. 162; Cf. 17, pp. 210-211, and 21, pp. 2-7] According to the
four proposals, the volume of the frustum would be, respectively,

L [(a+D)/2Fh

o [(a®4b*)/2]h
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m. [e*+4b*+ (a4 b)2/4] h/3

v. [a® + b® 4 ab] h/3.
If b = a, the frustum becomes a prism with volume @?h: all four
proposals agree in yielding the correct result. If b = 0, the frustum
becomes a pyramid with volume a*h/3: only 1v yields this, and so least 2, . . . , and the number in the last (tenth) pocket is at

the others must be incorrect. ] . .
east 9. Therefore, th ber of doll d t least |
To prove that 1v is generally correct, let x be the altitude of the IoRoRY L FUTIORC GRoflo/[RIR TEUNTes i aileas i

small pyramid cut from the full pyramid to leave the frustum. If 0+142+3+4---4+9=45
the volumes of the frustum, the full pyramid, and the small pyramid Bob cannot make it: he has only 44 dollars.
are F, A, and B, respectively, then (B) In the general case, the problem has a solution if

F:A—B:ﬂxs-*-—hz—b%z[azh—{—(az—bz)x] %

SOLUTIONS 53

53.1. [8;9; Cf. 17, p. 234, prob. 3]
(A) The least possible number of dollars in a pocket is obviously
0. The next greater number is at least 1, the next greater at |

nZO0+ 142404 (p—1)=LE=1)

A plane section of the figure through the altitude and parallel to It has no solution if
one side of the base contains similar triangles whose sides yield —plp—1) (p+1)(p—2)
the proportion = 2 =il 2 '

. 2 ..b 53.2. [8;9; 17, p. 237

I | o dip— e ’ b )P' ]

’ x+h a The general law is:

LT so that 1 9 n Il |
] ] W O S e S L S ¢ S . S |

ki] . ”hb TR R OV Y el Sl PR BT & |

" = The step from n to n + 1 requires that |

Substituting this value for x in the expression for F, we obtain

s
F=[ah + ==

bh] 5 = [ + b* + ab] g

52.3. Suppose x, y, and z are integers. Let 2%, with k = 0, be the highest
power of 2 that divides x, y, and z, so that x = 2/, y = 2"/, and
z = 2¥z’. Then substituting in the given equation and dividing
through by 2%, we obtain

()2 + (¥ )2 + (2)2 =2+ y'z.
Since the right-hand side is even, so is the left-hand side, and either
x’, i/, and 2z’ are all even or just one of them is. But if «/, ¢, and 2’
are not all zero (and if one is, the others are), they cannot all be
even, because 2 is not a common factor. Suppose x” is even and y’
and 2z’ are odd. Subtracting («’)? from both sides of the above
equation yields

()2 + ()2 = 2 (24w — ).
Both (y”)? and (z’)? are of the form 4n®> + 4n -+ 1, and so the
left-hand side divided by 4 leaves the remainder 2, whereas the
right-hand side is divisible by 4 (both x” and the quantity in paren-
thesis are even): Contradiction.

n+l 1 1
L)~  mto)l Tmr)

or
n4+2 1

(n+42)!" (n41)r
which is true forn =1,2,3, . . .

533. [8; 9; 17, pp. 235-236] Observe that the first and fourth equations
are related in the same way as the second and third equations: the
left-hand sides have the same coefficients but in opposite order, and
the right-hand sides are opposite. Adding the first equation to the
fourth and the second to the third, we obtain

6(x+u) +10(y +v) =0
10(x +u) + 10(y 4+ v) =0,

which yields x + u = 0 and y + v = 0. Substituting —x for u and
—y for v in the original equations, we find

—4x+4y= 16
6x — 2y = —16.
Thereforex = —2y=2u=20v=—2
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534. [8;9; Cf. 20, p. 49, ex. 2.35]

(A) In setting up equations, we think of x and the angles «, 8, v, 8
as given, and [ as the unknown. From AUVG we find GV in
terms of x, @ + B, and y (law of sines). From AVUH we find
HV in terms of x, 8, and y + 8 (law of sines). From AGHV
we find I in terms of GV, HV, and 8§ (law of cosines), and
using the expressions for GV and HV, we obtain

12 — x2 [ Sinz(a +ﬂ)

sin*(a+ B+7)
sin®f3 2sin(a 4 B) sin B cos & :I
sin’(B+7y+8)  sin(a+pB+y)sin(B+y+38) ][
(B) In the particular case in whicha =8, 8=y, a +B =y + &
= m/2, the above equation yields x = [, as it should. One can
also consider the case in which @ = 8, 8 = v, but the value for
a + B is not prescribed, and the case in which 8, y, 8, and «

w are substituted for «, B, y, and 8, respectively. Finally [sce 17,
v pp. 202-205], one can also “test by dimension.”
L : ' (C) The unknown and one of the data exchange roles.
(s
i SOLUTIONS 54

54.1. [10; 17, p. 237] In the nth line the right-hand side seems to be n*
and the left-hand side a sum of n terms. The final term of this
sum in the mth odd number, or 2m — 1, where

" =w_

Hence the final term of the sum on the left-hand side should be
m—1l=n>4n—1.
The initial term of the sum considered can be derived in two ways,
first by going back n — 1 steps from the final term, then by ad-
vancing one step from the final term of the preceding line:
(nP4+n—1)—2(n—1)=n*—n+1
[(n—1)24+(n—1)—1]4+2=n*—n-+ 1
But (n2—n+41) 4+ (n*—n+3) 4+ (n*+ n—1) is the
sum of n successive terms of an arithmetic progression whose com-
mon difference is 2. This sum is

(P —n41)+ (R 4n—1)
2

‘n=nd

(A quick verification is to observe that the nth row contains n terms
of which the average or “middle” term is n*.)

54.2.

54.3.

55.1.

55.2.
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[10; 17, pp. 237-238] The perimeter of the hexagon consists of 6n
boundary lines of length 1 and contains 6n vertices. Hence

V=146(14+24+3+-+n)=3n2+3n+ 1
By 3 diagonals through its center the hexagon is divided into 6
(large) equilateral triangles. By inspection of one of these

T=6(14+345+--+2n—1)=6n
The T triangles have jointly 3T sides. In this total 3T each internal

line of division of length 1 is counted twice, whereas the 6n lines
along the perimeter of the hexagon are counted but once. Hence

2L = 3T - 6n, L = 9n® 4+ 3n.
(It follows from Euler’s theorem on polyhedra that T +V = L + 1.)

[10; 20, p. 54] Expanding the right-hand side of the hypothetical
identity and equating corresponding coefficients, we obtain

A= bpB—=1¢cC.=1 (1)
bC + ¢B = cA + aC = aB + bA = 0. (2)
We derive from (2) that
bC = —cB, cA—= —aC, aB = —DbA,
and multiplying these three equations, we derive further that
abcABC = —abcABC

or
abcABC = 0.
Yet we derive from (1) that
abcABC = 1.

Consequently, the hypothetical identity is impossible.

SOLUTIONS 55

[11; 17, p. 234] The desired piece of land is bounded by two
meridians and two parallel circles. Since the arc of a parallel circle
intercepted by two fixed meridians is steadily shortened as the
circle moves away from the equator, the center of the land Bob
wants must lie on the equator; he cannot get it in the United States.

[11; 20, p. 54]
(A) Comparing coefficients of like powers on both sides of the
identity, we obtain
1=p*  4=2pq,  —2=gq"+ 2pr,
—12=2gr, 9=r
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The first three equations, used successively, determine two
systems of solutions
p=1,4=271r= -3, and p=—1,9g=—2r=23,
both of which also satisfy the remaining two equations.
(B) Usually it is not possible to satisfy a system with more equa-
tions than unknowns.

55.3. [11; 17, p. 236; Cf. 20, pp. 53-54, ex. 2.60-2.61]
(A) Bob, Paul, and Peter traveled equal distances, so we have
¢t — cty + cts = cty + pt + pts = pt1 + pta + cts.
The second equation yields
(c—p)ti= (c —p)ts.
Since we assume ¢ > p, it follows that t; = t;, that is, Peter
walks just as much as Paul. From the first equation, we find
that
(c—p)ts=(c+ p)te
and so we obtain
h_t_ctp
to - to —c— p
Hence the progress per hour is
c(ty —ta+t3)  clec+ 3P).
th+to+ts — 3c+p
ts _c—p
(B)t1+t2+t3_30+p'
(C) In the extreme case p = 0, (A) yields ¢/3 and (B) yields 1/3.
If p = ¢, (A) yields ¢ and (B) yields 0. These values are
intuitively reasonable.

55.4. [11; 17, p. 235] The base of the pyramid is a polygon with n sides.
In the case (A), the n lateral edges of the pyramid are equal; in
the case (B), the altitudes (drawn from the apex) of its n lateral
faces are equal. Draw the altitude of the pyramid, and join its
foot to the n vertices of the base in case (A), but to the feet of the
altitudes of the n lateral faces in case (B). In both cases, we obtain
n congruent right triangles. They have one leg (the altitude of the
pyramid ) in common; and the hypotenuse—a lateral edge in case
(A), a lateral altitude in case (B)—is of the same length in each.
Consequently, the third sides in the congruent triangles must be
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equal. Since they are drawn from the same point (the foot of the
altitude) in the same plane (the base), they form n radii of a circle
which is circumscribed about, or inscribed into, the base of the
pyramid, in cases (A) and (B) respectively. In case (B), it remains
to show that the n radii mentioned are perpendicular to the
respective sides of the base, but this follows from a well-known
theorem of solid geometry.

SOLUTIONS 56

56.1. [12; 17, p. 234] Any plane figure with a center of symmetry is
divided by a straight line through this center into two congruent
parts, hence two parts of equal area. The required line passes
through the center of symmetry.

56.2. [12; Cf. 17, p. 238, prob. 20, and 20, p. 97, ex. 3.84] Denote the
number of ways to pay an amount of n cents as

A, if only cents are used,

B, if cents and nickels are used,

C, if cents, nickels, and dimes are used,

D, if cents, nickels, dimes, and quarters are used,

E, if cents, nickels, dimes, quarters, and half-dollars are used.
(You may see now the reason for the notation E,.) Consider the
case of Cy. If no dime is used, the number of ways is B,. If at least
one dime is used, n — 10 cents remain to be paid in cents, nickels,
and dimes. Hence

Cn = Bn + Cn—l()
Similarly

Bn = An + Bn—5

Dy = Cn + Dn—25

En == Dn + En—r.o-
These formulas remain valid if we set

A():BO:CO:D():EO:]-

and regard any one of the quantities A,, B,, . . ., E, as equal
to 0 for n negative. The formulas allow us to compute the quantities
considered recursively, that is, by going back to lower values of n

or to former letters of the alphabet. This yields the following table
which contains among others the values for Es; (= Da»;) and Ej,.




® ug
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56.3.

56.4.

n|0 5 10 15 20 25 30 35 40 45 50
A, |1 1 1 1 1 1 1 1 1 1 1
B, |1 2 3 4 5 6 7 8 9 10 11
Cs | T 2 4 6 9 12 16 20 25 30 36
D,|1 2 4 6 9 13 18 24 31 39 49
E 1 2 4 6 9 13 18 24 31 39 50

n

[12; Cf. 21, pp. 26-28, sect. 8.4, and p. 32, ex. 8.3] Let « denote the

angle opposite side a of /. The equal sides of the isosceles triangles
with bases b and ¢ have lengths b/7/3 and ¢/\/3, respectively. Two
of these sides form with s a triangle such that the angle opposite s
is & + /3. The law of cosines applied to this triangle yields

3s?2 = b? 4 ¢ — 2bc cos (a—l—%).

Apply the law of cosines to the given triangle /\ to express bc
cos «, and set be sin a = 2T, where T is the area of /\, and obtain
62=a+ b2+ 2+ 4H/3T.

Since T is symmetric in @, b, and ¢, so is this expression.

[12] Let A, B,C, D, . . ., ] be the persons around the table, and

a,b,c,d, ..., jthe amounts received by them, respectively; B is
to the right of A, C to the right of B, . . . , A to the right of J. The
rule is expressed by the equations

N EY st

_ate
b="3 )

e
d= R

’ > v 8

First solution. From the above equations, it follows that
b—a=c—b=d—c=...=a—j
so that everyone’s share exceeds that of his neighbor on the left by
the same amount. This constant excess must be zero, since
(b—a)+(c—b)+(d—c)+ ...+ (a—7f)=0.
There is just one way to distribute the money: all shares are equal.

Second solution. Some person (or persons) must receive the maxi-
mum amount. Let such a person be B. Then none of the numbers
a, . .., jis greater than b; and, in particular,

b—a=0, b—c=0.
Yet, by the condition,
b—a=—(b—c).

Consequently, both of the two numbers b — a and b — ¢ must be
zero. Thus ¢ also attains the maximum, as does d, and so on. There-
forea=b=c=...=j.
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SOLUTIONS 57

[13; 20, p. 55] Bob has x stamps of which y sevenths are in the

second book; x and y are positive integers,
2, yx =
10 & = + 303 ==x

and hence

_3-5-7-101

="%8_35y
The denominator on the right-hand side must be positive and odd,
since it must divide the numerator, which is odd. This leaves three
possibilities: y = 1, 3, and 5. Only the last case yields a divisor
of the numerator. Therefore the unknowns are uniquely deter-
mined: y = 5 and x = 3535.

57.2. [13; Cf. 20, p. 34, sect. 2.5 (2)] A plane passing through h and the

trirectangular vertex intersects the tetrahedron in a right triangle
with hypotenuse h, one leg p, and the other leg, say k, which is the
altitude perpendicular to side @ in the triangle whose area is A.
Therefore

h* =k*+4p* and A:-;-‘ak.

Since 2D = ah, it follows from the last two equations that
4D? = a?h? = a2(k® 4 p?) = 4A% + a®p*.

Using an equation established before (in the first plan given in the
hint), we obtain further

4D = 442 + (12 + q?)p? = 4A% + (1p)* + (pq)*.
Using two more equations established before and dividing by 4,
we obtain finally

D2 = A? 4 B? + C?,

which is analogous to Pythagoras’ theorem.

57.3. [13; 20, p. 50] Consider the simplest special case first, that of the

equilateral triangle. Symmetry may lead us to suspect that in this
case the four triangular pieces will also be equilateral. If this is so,
however, the sides of the triangular pieces must be parallel to the
sides of the given triangle. This observation leads to a configuration
that solves the general case as well as the particular case of the
equilateral triangle: by four parallels to a side of the given triangle,
dissect each of the other two sides into five equal segments.




&l
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(R LI
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Performing this construction three times, with respect to each side
of the given triangle, we divide it into 25 congruent triangles
similar to it. From these 25 triangles, we easily pick out the four
mentioned in the problem; the area of each of them is 1/25 of the
given triangle’s area. (The uniqueness of this solution is not
proved.)

SOLUTIONS 58

58.1. [14; 20, p. 139] We decompose 32118 into prime factors as 2 X 3
X 53 X 101. There are just six ways to decompose this number into
a product of three factors all different from 1:

6 X 53 X 101 2 X 101 X 159
3 x 101 x 106 2X 53X 303
3 X 53X 202 2X 3X 35353

Only the first of these decompositions presents two factors between
4 and 100. Therefore, the captain has 6 children, he is 53 years old,
and the length of his boat is 101 feet.

58.2. [14; Cf. 20, p. 153, ex. 6.24] Setting x + y + u + v = s (which re-
mains unchanged by any permutation of x, y, u, and v), and adding
the four equations, we obtain

s = —3
and the system reduces to the following four equations:
s—v=4, §—x=—5, s—y=20, s—u=—8.

Consequently, x =2,y = —3,u = 5,and v = —7.

58.3. [14; 19, p. 214, ex. 16.6.1] Assertion 1 is false; assertions 1 and 1 are
true.

When the three altitudes, medians, or bisectors all lie entirely
within the triangle (as they do, except in the case of the altitudes
in an obtuse or right triangle), we have the following situation:
A, B, C are the vertices of the triangle, and A’, B/, C’ are interior
points on the opposite sides, respectively; and we have to examine
the sum AA” + BB’ 4 CC’. Since the sum of any two sides of a
triangle is greater than the third side,

AA’ + A'B > AB

AA’ 4 A'C > AC.
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Adding, we obtain
2AA’ 4+ BC > AB + CA
and by analogy
2BB’ + CA > BC + AB
2CC’ 4+ AB > CA + BC.
Adding the last three inequalities, we obtain
2(AA’ + BB’ 4 CC’) > AB - BC + CA. @
Consequently, assertions 11 and 1x are true, and assertion 1 is true |
for acute triangles. |
As a counterexample to assertion 1, consider an isosceles triangle
with base b and base angles A. As A tends to 0, each altitude tends

to 0, whereas the perimeter tends to 2b. An angle A sufficiently close
to 0 refutes assertion 1.

[14] The cases observed suggest the guess
142024384 ... 4+nln=(n+1)—1
This can be proved by mathematical induction or in the following
way:
(n4+1)!—nl=nl(n+1) —nl =nln.

Therefore, forn=1,2,3, . . . , n:
111 =2 — 1!
212 =3l — 2l
313 =4 — 3!

nn=(n+4 1) —nl
Addition of these equations yields, after obvious cancellations, the
desired result.

SOLUTIONS 59

[20, p. 53] We use the following notation:
u for Al's speed,
v for Bill's speed,
t, for the time from the start to the first meeting,
t, for the time from the start to the second meeting, il
d for the length of the street.

Then




i
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ut,=a ute=d+b
vti—=d—a vte=2d — b
(A) By expressing u/v in two different ways, we obtain
a  d+b
d—a~ 2d—V

Hence, after discarding the vanishing root, we find d = 3a — b.
(B) Al walks faster. Numerically: u/v = 3/2.

59.2. [20, p. 50] For the first pattern 1007/4, and for the second
1007/(2\/3), or approximately 78.54% and 90.69% respectively.
The transition from a large (square) table to the infinite actually
involves the concept of limit, but we do not insist on this since the
result is intuitive.

59.3. We observe first that if n is greater than 1, the quotient of n"~! — 1
andn — 1lis
nn—2+nﬂ—3+ ... +n+1.
We conceive this sum as resulting from the polynomial
R(x) =(14x)" 2+ (142)"2+ -+ (1+x)+1
when we substitute in it n — 1 for x. In the expansion of R(x) in
powers of x (you may use the binomial formula), the term inde-
pendent of xis R(0) = n — 1, and so
R(x) = Qn-s(x)x +n—1
where Q,_s(x) is a polynomial of degree n — 3 whose coefficients
are integers. Now we substitute n — 1 for x and collect our con-
clusions:
a1 —-1=(n—1)R(n—1)
=(n—1) [Qu-s(n—1)(n—1) +n—1]
= (n—1)?[Qn_s(n—1) +1].

59.4. Let A, B, and C be the vertices of the given triangle, and let a, b,
and ¢ be the lengths of the opposite sides, respectively. Consider
the side of the hexagon opposite the side of length a, and denote
its length by @’. By drawing various figures and considering extreme
cases, we see that we must show a’ = 2a,,, where a,, is the length
of the median of AABC drawn to the side of length a. Extend AC
to D so that AD = b, and join D to B. Now ACDB ~ ACAA’,
where A’ is the midpoint of the side BC so that AA” = a,,. Hence
the median of AABC of length a,, is parallel to BD and a,, = BD/2.
But the triangle whose sides have lengths @, b, and ¢ is congruent
to AABD (two sides and an included angle ). Hence a,, = a’/2.

60.1.

60.2.

60.3.

53
SOLUTIONS 60

[15; 20, p. 55] If the reduced price is x cents and there are y pens
in the remaining stock, x < 50 and
xy = 3193.
Now, 3193 = 31 X 103 is a product of two prime factors, and so it
has precisely four different factors, 1, 31, 103, and 3193. If we
assume that x is an integer, x = 1 or 31. If we assume also that
x > 1, then x = 31.

[15; 20, p. 50] Let the distances of P from the four sides of the
rectangle be x, y, ¥, ¢/, in cyclical order. With notation appro-
priately chosen,

a® = y? 4 x*,
¢ =y? + x3

P=at 4y
d? = 22 + y2,

and so
a® + 2 =b? 4 d.
Inourcase,a =5, b =10, ¢ = 14, and so
d? =25 — 100 + 196 = 121, d=11.

Observe that the data a, b, and ¢ which determine d are insufficient
to determine the sides x + x” and y + y’ of the rectangle.

[15] We write the known relation
sin 2 = 2 sin « cos «

and substitute in it successively a/2, a/4, and «/8 for . We obtain

Cosg:_sinaa
2sm§

sin 2
cosg-z 2
4 9sin %
sm4

o

cosg- sin 4.
8_2sinq

S

Multiplication of the three equations yields, after obvious cancella-
tions, the required identity. If we had proceeded to n successive
equations instead of three, the multiplication would have yielded

COS = COS x COS = + * + COS o= = LS
2 4 8§ an .«




60.4.

One can also guess this more general formula, and having guessed
it, prove it afterwards by mathematical induction,

[15; 20, p. 51] Let O stand for the volume of the octahedron, T

for the volume of the tetrahedron, and a for the length of an edge.

First solution. The octahedron is divided by an appropriate plane
into two congruent regular pyramids whose common square base
has area a® The height of one of these pyramids is a/\/2 (the “key
plane figure” passes through a diagonal of the base) and so
_o@ a a2
0=2 B3
Pass a plane through the altitude (of length k) of the tetrahedron
and through a coterminal edge. The intersection (the key plane
figure) is divided by the altitude into two right triangles, from
which we obtain
B — g% — (M)g — (M)g . (M)z — 24°
6 2 6 3
and so

a a3 a2 _ a2
2 2 3 12

1
L=g
Finally,
O = 4T.
Second solution. Consider the regular tetrahedron with edge 2a;
its volume is 2°T. Four planes, each of which passes through the
midpoints of three of its edges terminating in the same vertex,
dissect it into four regular tetrahedra, each of volume T, and a
regular tetrahedron of volume O. Hence,
4T 4~ O = 8T
which yields again O = 4T.

SOLUTIONS 61

61.1.

[16; Cf. 20, p. 153, ex. 6.24] The simplest expression that is sym-

metric in x, y, and z is their sum, Adding the three proposed equa-
tions, we obtain

10000x + 10000y -+ 10000z = 20000,
x4+y+z=2

< -

By subtracting
2134x + 2134y + 2134z — 4268

from each of the three proposed equations, we obtain three new
equations that when solved yield x = 1, y = —1, z = 2 respec-
tively.

61.2. [16; 20, p. 149] The condition is easily split into two parts expressed

by the two equations
b+g+wts=14
b + 2g + 3w + 4s = 30.
Subtracting the first from the second, we obtain
g + 2w + 3s = 16,

which shows that either g and s are both odd or they are both
even. Hence there are only four cases that need to be examined:

g s w=8— (g4 3s)/2

3 5 —1
5 3 1
2 4 1
1 2 3

Only the last case is admissible. Therefore,
§=2 w=23 g =4, b=5
and the ladies are
Ann Smith, Betty White, Carol Green, Dorothy Brown.

61.3. [16; 21, p. 193] If x = 0, the second (or third) equation yields

y*z* = 0, and so one more unknown, y or z, must also be 0. Hence
either x, y, and z are all different from 0 or at least two vanish. If
any two vanish, the equations are satisfied.

Now we consider the case in which no one of the three unknowns
is 0. By dividing, we obtain the system

Zx XL
=, m_,
Y z
Yz . 3
x Z
}E_+_f‘i e

x Ty

Adding these three equations and dividing by 2, we have

Yz | zX ﬂza-f-b—{—c
x+y+z 2 ’
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From this equation we subtract each of the three equations of the
foregoing system and obtain

_—a+b+4c
2

a—b+c
2
a4+ b—c
=g
The product of these three equations is
xyz=(—a+b+c)(a—b+c)(a+b—c)/8 (*)
which we divide by each equation of the foregoing system to
obtain, after extracting a square root,
x=[(a—b+c)(a+Db—c)]*/2
y=[(—a+b+c)(a+b—rc)]*/2
z=[(—a+b+c)(a—Db+c)]*/2
We must take into account, however, the two values of each square
root. Let us concentrate upon a suggestive particular case and
assume that a, b, and ¢ are the lengths of the three sides of a
triangle. Then by (°) above, xyz is positive, and therefore only
the following four combinations of signs are admissible:

n|@ < |8 »[§

x + + = -
y + - + -
= e o

61.4. [16; Cf. 20, p. 51, ex. 249] Pass a plane through the altitude of the

pyramid and through the midpoint of one side (of length a) of its
base. The intersection of this plane with the pyramid is an isosceles
triangle that can be used as a key figure: its height is h, its legs are
of length [ (where [ is the height of a lateral face of the pyramid),
and its base is 2b (where b is the altitude of one of the six con-
gruent equilateral triangles composing the base of the pyramid).
The area of the base is

S _ 6ab

4 — 2
the area of the lateral surface is

85 _ 6al

4 — 27
and so

1 = 3b.

62.1.

62.2.

BT

57

Using the key figure, we obtain
h* 4 b* = I2 = 9b?

and so
b2 — ’;—
We also have
a2
b2 + z‘ = a?
and so
ook
—_— 3 — 6 .
Therefore
= 12ab = hX\/3.

SOLUTIONS 62

[CE. 21, p. 162, ex. 15.36] We are required to find the points of

intersection of two congruent ellipses symmetrical to each other
with respect to the line x = y. Subtraction of the equations yields
x* = y?. There are four points of intersection: (6,6), (—6, —6),
(2, —2), (=2, 2).

The product of the four products is symmetric in a, b, ¢, and d. If

we can show that
4a(1 — b) 4b(1 —¢) 4c(1 — d) 4d(1 — a) = 1,
it will follow that not all of the four given products are greater
than one. We are given that 0 < a < 1 0+ bt 1,00 e <1,
anc‘l 0 < d < 1. Consider the product 4a(1 — a), which is positive
as its factors are positive; what is its maximum? An obvious guess
is that it is 1, attained when ¢ = %. To verify this, observe that
l1—4a(1l—a)=(1—2a)2=0

and that the case of equality is attained only when a = V4. Simi-
larly, the products 4h(1 — b), 4¢c(1 — c), and 4d(1 — d) are
also positive and not greater than one.

Consequently,

4a(1 —a)4b(1 —b) 4c(l —c)4d(1 —d) =<1.
Rearranging terms,

4a(1—Db)4b(1 —c)4c(l —d)4d(1 —a) < 1.
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(A) Since /BCA = /A’CB = 45° and /C = 90°, C lies on the
line segment A’B’. AABC and AABC’ are both right triangles;
they can be inscribed in a circle with diameter AB. /ACC’
and /BCC’ intercept equal arcs of the circle, so they are
equal. Therefore, / B'CC’ = /A’CC" = 90°.

(B) If the sides of the triangle are of length a, b, and ¢, then
B'C is of length b/\/2, A'C is of length a/\/2, and A’B’ is
therefore of length (a + b)/\/2.

Let D be the vertex opposite A in the square on side b. Then
AACC’ ~ AADB (pairs of corresponding angles are equal).
Therefore, CC’ : AC = DB : AD, and CC’ is also of length
(a+Db)/\V2

(A proof, using transformations, of the general case in which the

triangle is not necessarily a right triangle is given in [22, pp. 96-

97].)

[21, p. 188]

(A) Pass a plane through the edge of length b and the mid-
point M of the opposite edge. The intersection of this plane
with the tetrahedron is an isosceles triangle that can be used
as a key figure: its base is of length b, its legs are of length
a\/3/2 (they are altitudes of the equilateral faces of the
tetrahedron), and therefore its height is \/3¢> — D*/2. By
symmetry, the center O of the circumscribed sphere lies on
the line joining M to the midpoint B of the base of this triangle.
Also, the line joining O to the center C of one of the equilateral
faces of the tetrahedron is perpendicular to that face. The point
C divides each altitude (or median) of the equilateral face in
the ratio 1 : 2. Therefore CM is of length a\/3/6. Triangle
OCM is similar to each triangle into which the key figure is
divided by MB. Therefore the ratios of corresponding sides are
equal. If x is the length of OB, we have

VBE—F a\/3

2 c 2
o3 D
6 2
Solving this equation for x, we obtain
2 —b*

T NEE—P

63.1.

63.2.

59

If 7 is the radius of the circumscribed sphere,

(8a® — b2) " 4 4(3a% — b2)
and

g =8 [4aZ —D*.
T 2N3a2— b2

Observe that the denominator vanishes when b — a\/3. This
is a limiting case, since for the tetrahedron considered in the
problem, b < a\/3.

(B) The radius of a spherical surface can be determined by means
of a device in which four points are arranged to form the
vertices of two congruent equilateral triangles sharing a com-
mon side and “hinged” along that side. Let the sides of the
triangle have length a. By placing the four points in contact
with the surface and by measuring the distance b between the
two points that are not endpoints of the common side, one
can use the result (A) to calculate the radius of the sphere
determined by the four points.

SOLUTIONS 63

[21, p. 188] Each vertex of the triangle is equidistant from two of

the three points in which the sides of the triangle are tangent to
the inscribed circle. Label A, B, and C as the vertices opposite
sides a, b, and ¢, respectively. Then the distance from C to the two
nearest points of tangency is d/2, the distance from B to the two
nearest points of tangency is ¢ — (d/2), and the distance from A
to the two nearest points of tangency is b — (d/2). Since
a— (d/2) +b — (d/2) =c,
it follows that

a+b=c+d.

[Ct. 21, p. 191, ex. 3.65.1]

First solution. Rewrite the expression as

n[(n—2)(n—1)n(n+1)(n+2)]
and observe that the expression in brackets is the product of five
consecutive integers. We observe that 360 = 2% - 3% - 5, Given any
five consecutive integers, one must be a multiple of 5; hence 5
divides the expression. Also, one of these five integers must be a




eithern — 2and n 4 1 or n — 1 and n + 2 are each divisible by 3,
and hence 9 divides the expression. Since the expression is divisible
by 5, 8, and 9, and since these have no factors in common, the
expression must be divisible by their product.

Second solution.
n*(n®* —1)(n* —4)
360
_[(n4+3)+ (ﬂ—3)](n+2')(ﬂ+ )n(n—1)(n—2)
- 6!

(14941

and binomial coefficients are integers.

60
61
multiple of 4, and since at least one other must be even, 8 must The surface area of the prisis
divide the expression. If n is a multiple of 3, then n? is a multiple 2 5
9 e . y . - f3’ . ————— _r —
of 9, and 9 divides the expression. If n is not a multiple of 3, then 2:6 3 + 6 \/§2r =4h/3 2483 2= 12\/3 - 12,

Let a be the length of an edge of the regular octahedron whose
volume is 4\/3 - %, The octahedron can be divided into two con-
gruent pyramids whose common base is a square with side of length
a and whose height is half the diagonal of a square with side of
length a. Thus the volume of the octahedron is

A.2 &3
25 F=" =43 p
and

a=\/6"r.
The surface area of the octahedron is

3.
83%2‘-22\/?02:2\/37-6#:12\/:?-#.

[
63.3. [Cf. 21, p. 163, ex. 15.37-15.38] Therefore the two surf:
- 5 [ 200, € ) ) > ace areas are equal.
"”_‘ _ Subtracting, in turn, the second equation from the ﬁfSt_s the third Given two solids with the same number of faces and the same
.H' from the second, and the first from the third, we obtain the new volume, one would naturally expect that if one of them is regular
: e system it will have a smaller surface area than the other.

—5x2 +4y*+ 22=0

2 —5y* 4+ 422 =0

4x2 4 y? — 522 = 0.
We can eliminate z*> by multiplying the first equation in this system
by —4 and adding it to the second. We can eliminate x*> by mul-
tiplying the second equation by —4 and adding it to the third.
This yields

2= y2 = Z2
Substitution in the original system yields eight solutions:
(1,151, (=1, —1, —1),
(3, —3,—3), (—3,3,3), (—3,3,—3),
(3,—3,3), (—=3,-3,3), (3,3, =3).

63.4. [Cf. 21, p. 162, ex. 15.29-15.30] Let r be the radius of the circle

inscribed in the base of the prism. The base is composed of six
equilateral triangles whose sides are of length 2r/\/3. The volume

of the prism is

r2
6\/521‘:4\/3-‘13.

SOLUTIONS 64

64.1. [21, p. 188] Let s be the length of the side of the base of the given
prism (the cake). Then the altitude of the given prism is 5s/16,
the volume is 5s%/16, and the surface (5 faces) with icing is 9s2/4.
For the required prism (the piece of cake), the area of the base
is 5°/4 and the volume is 55%/(16 X 9). The altitude is 55/36, the
quotient of the volume and the base area. The side of the base of
the required prism is s/2. Therefore the required ratio is

On the top of the cake (a square) we mark a concentric square.
The sides of the smaller square are parallel to and half the length of
the sides of the larger square. Line segments join corresponding
vertices and the midpoints of corresponding sides,

Each of the 8 pieces with icing on the side is a right prism
of which a smaller right prism is cut off; for both prisms, larger
and smaller, the base is an isosceles right triangle.

Another solution can be obtained by rotating the square picce
about its center through 45°,
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First solution. Recall the formula for the sum of a'ge.aon.letric pro-
gression. The number of the sequence that has 2n digits is

9+ 8(10 4102 4 + + » + 10"-1)

+ 4(10" 4 10"+ 4 - -+ 4 1021)
=1+ (84410")(1 4104 + - 4+ 10"1)
=14 4(10"+2)(10" — 1) /(10 — 1)

__mw+1Y
=== T2

This is the square of an integer, since

(2:10" 4+ 1)/3 =1+ 6(10" — 1) /9 = 66667,
a number with n digits.
Second solution. Experimentation with some examples,
49 =72, 4489 =67, 444889 = 667* o
j e that the nth term has the form (666 ]

ii:gls'et%gt};iéo Illll:sc t:rdigits. To confirm the conjecture by a proof,
it is possible to start from the remark that

666-+667 X 6 = 4000002

666667 X 7 = 4666669
and visualize the usual pattern of multiplication for integers writ-
ten in decimal notation.

64.3. Here are easy examples, all right triangles:

64.4.

SIDES AREA
3 4 5 6

1 1 2 Va

VI VI 2 1 ]

WE 422 52 12 |

There are many other examples, but triangles that are not right
triangles are less convenient.

First solution. Essentially, we are considering here three sets A,. %
and C, and their intersections. If each set is representec'l by .poin).
inside a circle (Venn diagram, or more correctly Eulerian circ tt;l :
the three circles, each partly overlapping t.he other Fwo, ﬁu:hr . ,
plane into eight regions. One of these regions, outsxdg ;i k- o
circles, is infinite; the problem is to find the number of individuals

63

belonging to this infinite region. Beginning with the region inside
all three circles (from the right-hand end of the row of given
numbers) and working outward (to the left in the row), one can
calculate how many individuals are in each region. Let X denote
the set of individuals not in set X, let XY denote the intersection
of sets X and Y, and let [X] denote the number of individuals in
set X. Then the number of individuals in the union of A, B, and C
is given by

[ABC] + [ABC] + [ABC] + [ABC] + [ABC] + [ABC] + [ABC]
=142454+1404145=15

Thus the required number (of students passing in all three subjects)
is4] — 15 = 26.

Second solution. Let us use the same notation as in the first solution.
The number of individuals in the union of A, B, and C is also
given by

[Al+ [B] +[C]
— [AB] — [AC] — [BC]
+ [ABC]

An individual who belongs to exactly one of the three sets is counted
once in the first line and nowhere else. An individual who belongs
to exactly two of the sets is counted twice positively in the first
line and once negatively in the second line. An individual who
belongs to all three sets is counted three times positively in the
first line, three times negatively in the second, and once positively
in the third. Thus, the proposed expression counts all the individuals
it must count, each just once (and it can be generalized to a larger
number of sets).

Applying the general expression to our present case, we find that

124548
—9-§—3
+ 1 =15

students failed in one or more subjects, and so 41 — 15 — 26 passed
in all three.

(Note: The problem on the original examination paper contained
an error: 4 was inadvertently substituted for 2. Although the data
were therefore inconsistent, contestants were nonetheless able to
use methods essentially equivalent to those given above, and their
arguments were judged accordingly. )

[ ———
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64
64.5. [21, p. 195]

(A) Our task is greatly facilitated if we have learned and remem-
ber a classical proposition of geometry (Euclid VI 3): The
segments of the base, p and g, have the same proportion as the
adjacent sides, @ and b:

p_a
q b
Since p + g = ¢, we have
ac be
P=g1p T=a+0

Applying the law of cosines twice to two different triangles
that both contain the angle @, opposite to the side a in the
original triangle:

a® = b% + ¢* — 2bc cos a

d? = b? + q* — 2bq cos &
Eliminating cos « and solving for d*, we obtain

i c_\
g b [1 _ (a - b) ]

(If you do not know, or cannot remember, that proposition
about the ratio p/q, it can be discovered by surveying trigo-
nometric relations in the three triangles. It follows, in fact,
from the law of sines applied twice to the two smaller tri-
angles. )

(B) A particular case. If a = b, the given triangle is isosceles with
base ¢, and the formula yields

d*=a —C-Z-.

A limiting case. If the given triangle degenerates, collapses
into the line segment ¢, then a + b = ¢ and the formula yields

d=0.
The formula can also be “tested by dimension” [17, pp. 202-

205].

SOLUTIONS 65

65.1. [21, p. 192] If you list all twelve decompositions of 72 into three

factors and note the sum of the factors, you will observe that the
is 14 (= 266 — 3:3-8). Hence the street
number is 14. In view of the oldest boy, the ages are 3, 3, and 8.

only sum occurring twice

65

65.2. [21,p.187] Leta and b denote the lengths of the legs. The hexagon
consists of three squares, of area a2, b% and c?, respectively, and
four triangles all of the same area A. Either introduce auxiliar)’r line
segments into the figure to prove that one of the two obtuse triangles
has altitude @ and base b and the other has altitude b and base a, or
use trigonometry:

1 1 .
A=§ab:—acsmﬁ:%acsin (180° — B).

Lo

Hence the area of the hexagon is
a® + b + ¢ 4 4A = 22 4 4A.

65.3. [Cf. 21, pp. 146-149, and p. 158, ex. 15.3]
(A) Triangle with vertices (1, 1), (0, 1), (%, %) and sides
located on the straight lines y =1, x = y; yet x +y > 1
(B) Two sides of triangle (A) onlines y =1 and x =y
(C) Arcof circle x* 4 y*> =1 inside triangle (A)
(D) Part of triangle (A) above arc (C)
(E) Part of triangle (A) below arc (C).

The point (1, 1) represents the equilateral triangle; the point
(1/\/2, 1)\/2) represents the isosceles right triangle; the point
(1/2,\/3/2) represents the 30°60°90° triangle; and the side of tri-
angle (A) on line x 4+ y = 1 represents the degenerate triangles.

654. [Cf. 21, p. 139, ex. 14.24] The remainder r(x) is a polynomial of
degree not exceeding 2:

r(x) = a + bx + cx2
Then
x4+ 2 x® 4 a4 B =g(x) (2*—2x) +a+ bx+ cx.
This yields for x = —1, 0, and 1 respectively:

—5=a—b+c
0=ua
S5=a+Db+ec

Therefore a = 0, b = 5, ¢ = 0, and the desired remainder is 5x.
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